124 research outputs found

    Gallium Arsenide preparation and QE Lifetime Studies using the ALICE Photocathode Preparation Facility

    Full text link
    In recent years, Gallium Arsenide (GaAs) type photocathodes have become widely used as electron sources in modern Energy Recovery Linac based light sources such as the Accelerators and Lasers in Combined Experiments (ALICE) at Daresbury Laboratory and as polarised electron source for the proposed International Linear Collider (ILC). Once activated to a Low Electron Affinity (LEA) state and illuminated by a laser, these materials can be used as a high-brightness source of both polarised and un-polarised electrons. This paper presents an effective multi-stage preparation procedure including heat cleaning, atomic hydrogen cleaning and the activation process for a GaAs photocathode. The stability of quantum efficiency (QE) and lifetime of activated to LEA state GaAs photocathode have been studied in the ALICE load-lock photocathode preparation facility which has a base pressure in the order of 10^-11 mbar. These studies are supported by further experimental evidence from surface science techniques such as X-ray Photoelectron Spectroscopy (XPS) to demonstrate the processes at the atomic level.Comment: Presented at First International Particle Accelerator Conference, IPAC'10, Kyoto, Japan, from 23 to 28 May 201

    Transverse phase space characterization in an accelerator test facility

    Get PDF
    We compare three techniques for characterising the transverse phase space distribution of the beam in CLARA FE (the Compact Linear Accelerator for Research and Applications Front End, at Daresbury Laboratory, UK): emittance and optics measurements using screens at three separate beamline locations; quadrupole scans; and phase space tomography. We find that where the beam distribution has significant structure (as in the case of CLARA FE at the time the measurements presented here were made) tomography analysis is the most reliable way to obtain a meaningful characterisation of the transverse beam properties. We present the first experimental results from four-dimensional phase space tomography: our results show that this technique can provide an insight into beam properties that are of importance for optimising machine performance

    Beam dynamic analysis of RF modulated electron beam produced by gridded thermionic guns

    Get PDF
    A thermionic cathode gridded electron gun used in injectors for different types of circular and linear particle accelerators and for energy recovery configurations was studied. Both theory and numerical simulation were used to explore the relationship between the bunch charge and bunch length. The electron gun is based on a Pierce-type geometry. It was initially designed using Vaughan synthesis followed by optimization using a 2D electron trajectory solver TRAK. After optimization, the grid in front of the cathode was inserted and the RF field was introduced through a coaxial waveguide structure. The complete gun was simulated using the PIC code MAGIC. High duty cycle operations at frequencies 1.5 GHz and 3.0 GHz, were investigated using different combinations of both the bias and the RF voltage applied between the cathode and the grid. The beam dynamics results from the PIC showed that a minimum bunch length of 106 ps could be achieved with a bunch charge of 33 pC when the driving RF frequency was 1.5 GHz. Operating at the higher RF frequency of 3GHz did not significantly reduce the bunch length. The normalized emittance of about 5.6 mm-mrad was demonstrated in PIC simulations

    A plasma wakefield acceleration experiment using CLARA beam

    Get PDF
    We propose a Plasma Accelerator Research Station (PARS) based at proposed FEL test facility CLARA (Compact Linear Accelerator for Research and Applications) at Daresbury Laboratory. The idea is to use the relativistic electron beam from CLARA, to investigate some key issues in electron beam transport and in electron beam driven plasma wakefield acceleration, e.g. high gradient plasma wakefield excitation driven by a relativistic electron bunch, two bunch experiment for CLARA beam energy doubling, high transformer ratio, long bunch self-modulation and some other advanced beam dynamics issues. This paper presents the feasibility studies of electron beam transport to meet the requirements for beam driven wakefield acceleration and presents the plasma wakefield simulation results based on CLARA beam parameters. Other possible experiments which can be conducted at the PARS beam line are also discussed

    Spin-Momentum Correlations in Quasi-Elastic Electron Scattering from Deuterium

    Get PDF
    We report on a measurement of spin-momentum correlations in quasi-elastic scattering of longitudinally polarized electrons with an energy of 720 MeV from vector-polarized deuterium. The spin correlation parameter AedVA^V_{ed} was measured for the 2H⃗(e⃗,e′p)n^2 \vec{\rm H}(\vec e,e^\prime p)n reaction for missing momenta up to 350 MeV/cc at a four-momentum transfer squared of 0.21 (GeV/c)2^2. The data give detailed information about the spin structure of the deuteron, and are in good agreement with the predictions of microscopic calculations based on realistic nucleon-nucleon potentials and including various spin-dependent reaction mechanism effects. The experiment demonstrates in a most direct manner the effects of the D-state in the deuteron ground-state wave function and shows the importance of isobar configurations for this reaction.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Lett. for publicatio

    Beam characterisation and machine development at VELA

    Get PDF
    An overview is presented of developments on VELA (Versatile Electron Linear Accelerator), an RF photoinjector with two user stations (beam areas BA1, and BA2) at Daresbury Laboratory. Numerous machine development, commissioning, beam characterisation and user experiments have been completed in the past year. A new beamline and a dedicated multi-purpose chamber have been commissioned in BA1 and the first experiments performed. A number of measures have been taken to improve the stability of machine by mitigating problems with a phase drift, laser beam transport drift and a coherent beam oscillation. The 6D phase space of the electron beam has been characterised through quadrupole scans, transverse tomography and with a transverse deflecting cavity

    The conceptual design of CLARA, a novel fel test facility for ultra-short pulse generation

    Get PDF
    CLARA will be a novel FEL test facility focussed on the generation of ultra-short photon pulses with extreme levels of stability and synchronisation. The principal aim is to experimentally demonstrate that sub-cooperation length pulse generation with FELs is viable, and to compare the various schemes being championed. The results will translate directly to existing and future X-ray FELs, enabling them to generate attosecond pulses, thereby extending their science capabilities. This paper gives an overview of the motivation for CLARA, describes the facility design (reported in detail in the recently published Conceptual Design Report [1]) and proposed operating modes and summarises the proposed areas of FEL research
    • …
    corecore